Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

if(TRUE, x, y) → +@z(div(-@z(x, y), y), 1@z)
div(x, y) → if(&&(>=@z(x, y), >@z(y, 0@z)), x, y)

The set Q consists of the following terms:

if(TRUE, x0, x1)
div(x0, x1)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → PLUS_INT(pos(s(0)), div(minus_int(x, y), y))
IF(true, x, y) → DIV(minus_int(x, y), y)
IF(true, x, y) → MINUS_INT(x, y)
DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
DIV(x, y) → AND(greatereq_int(x, y), greater_int(y, pos(0)))
DIV(x, y) → GREATEREQ_INT(x, y)
DIV(x, y) → GREATER_INT(y, pos(0))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → PLUS_INT(pos(s(0)), div(minus_int(x, y), y))
IF(true, x, y) → DIV(minus_int(x, y), y)
IF(true, x, y) → MINUS_INT(x, y)
DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
DIV(x, y) → AND(greatereq_int(x, y), greater_int(y, pos(0)))
DIV(x, y) → GREATEREQ_INT(x, y)
DIV(x, y) → GREATER_INT(y, pos(0))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)

The TRS R consists of the following rules:

if(true, x, y) → plus_int(pos(s(0)), div(minus_int(x, y), y))
div(x, y) → if(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

if(true, x0, x1)
div(x0, x1)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(x, y) → IF(and(greatereq_int(x, y), greater_int(y, pos(0))), x, y) at position [0] we obtained the following new rules [LPAR04]:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), greater_int(neg(s(x1)), pos(0))), neg(s(x0)), neg(s(x1)))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), neg(0), pos(0))
DIV(neg(s(x0)), pos(0)) → IF(and(false, greater_int(pos(0), pos(0))), neg(s(x0)), pos(0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(neg(s(x0)), neg(0)) → IF(and(false, greater_int(neg(0), pos(0))), neg(s(x0)), neg(0))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), greater_int(neg(s(x1)), pos(0))), neg(s(x0)), neg(s(x1)))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), neg(0), pos(0))
DIV(neg(s(x0)), pos(0)) → IF(and(false, greater_int(pos(0), pos(0))), neg(s(x0)), pos(0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(neg(s(x0)), neg(0)) → IF(and(false, greater_int(neg(0), pos(0))), neg(s(x0)), neg(0))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), greater_int(neg(s(x1)), pos(0))), neg(s(x0)), neg(s(x1)))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), neg(0), pos(0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), greater_int(neg(s(x1)), pos(0))), neg(s(x0)), neg(s(x1))) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), neg(0), pos(0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(neg(0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), neg(0), pos(0)) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(neg(0), pos(0)) → IF(and(true, false), neg(0), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(neg(0), pos(0)) → IF(and(true, false), neg(0), pos(0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(neg(x0), pos(s(x1))) → IF(and(false, greater_int(pos(s(x1)), pos(0))), neg(x0), pos(s(x1))) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(neg(x0), pos(s(x1))) → IF(and(false, true), neg(x0), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(neg(x0), pos(s(x1))) → IF(and(false, true), neg(x0), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1)))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), greater_int(pos(s(x1)), pos(0))), pos(s(x0)), pos(s(x1))) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0)))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(pos(0), pos(s(x0))) → IF(and(false, greater_int(pos(s(x0)), pos(0))), pos(0), pos(s(x0))) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(pos(0), pos(s(x0))) → IF(and(false, true), pos(0), pos(s(x0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(pos(0), pos(s(x0))) → IF(and(false, true), pos(0), pos(s(x0)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
QDP
                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greater_int(pos(0), pos(0)) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule DIV(pos(x0), pos(0)) → IF(and(true, greater_int(pos(0), pos(0))), pos(x0), pos(0)) at position [0,1] we obtained the following new rules [LPAR04]:

DIV(pos(x0), pos(0)) → IF(and(true, false), pos(x0), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(pos(x0), pos(0)) → IF(and(true, false), pos(x0), pos(0))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greater_int(pos(0), pos(0)) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greater_int(pos(0), pos(0)) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
QDP
                                                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(y0, pos(s(x0))) → IF(and(greatereq_int(y0, pos(s(x0))), true), y0, pos(s(x0))) at position [0] we obtained the following new rules [LPAR04]:

DIV(pos(0), pos(s(x0))) → IF(and(false, true), pos(0), pos(s(x0)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(neg(x0), pos(s(x1))) → IF(and(false, true), neg(x0), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
QDP
                                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(pos(0), pos(s(x0))) → IF(and(false, true), pos(0), pos(s(x0)))
DIV(neg(x0), pos(s(x1))) → IF(and(false, true), neg(x0), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
QDP
                                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
QDP
                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false
and(true, true) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(pos(x0), neg(x1)) → IF(and(true, greater_int(neg(x1), pos(0))), pos(x0), neg(x1)) at position [0] we obtained the following new rules [LPAR04]:

DIV(pos(y0), neg(s(x0))) → IF(and(true, false), pos(y0), neg(s(x0)))
DIV(pos(y0), neg(0)) → IF(and(true, false), pos(y0), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
QDP
                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(pos(y0), neg(s(x0))) → IF(and(true, false), pos(y0), neg(s(x0)))
DIV(pos(y0), neg(0)) → IF(and(true, false), pos(y0), neg(0))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false
and(true, true) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false
and(true, true) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(neg(0), neg(x0)) → IF(and(true, greater_int(neg(x0), pos(0))), neg(0), neg(x0)) at position [0] we obtained the following new rules [LPAR04]:

DIV(neg(0), neg(0)) → IF(and(true, false), neg(0), neg(0))
DIV(neg(0), neg(s(x0))) → IF(and(true, false), neg(0), neg(s(x0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
QDP
                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(neg(0), neg(0)) → IF(and(true, false), neg(0), neg(0))
DIV(neg(0), neg(s(x0))) → IF(and(true, false), neg(0), neg(s(x0)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false
and(true, true) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(s(x)), pos(0)) → false
and(true, true) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
QDP
                                                                                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
QDP
                                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(y0, neg(s(x0))) → IF(and(greatereq_int(y0, neg(s(x0))), false), y0, neg(s(x0))) at position [0] we obtained the following new rules [LPAR04]:

DIV(neg(0), neg(s(y1))) → IF(and(true, false), neg(0), neg(s(y1)))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(x0), neg(s(y1))) → IF(and(true, false), pos(x0), neg(s(y1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
QDP
                                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(neg(0), neg(s(y1))) → IF(and(true, false), neg(0), neg(s(y1)))
DIV(pos(x0), neg(s(y1))) → IF(and(true, false), pos(x0), neg(s(y1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(y0, neg(0)) → IF(and(greatereq_int(y0, neg(0)), false), y0, neg(0)) at position [0] we obtained the following new rules [LPAR04]:

DIV(neg(0), neg(0)) → IF(and(true, false), neg(0), neg(0))
DIV(neg(s(x0)), neg(0)) → IF(and(false, false), neg(s(x0)), neg(0))
DIV(pos(x0), neg(0)) → IF(and(true, false), pos(x0), neg(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
QDP
                                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(neg(0), neg(0)) → IF(and(true, false), neg(0), neg(0))
DIV(neg(s(x0)), neg(0)) → IF(and(false, false), neg(s(x0)), neg(0))
DIV(pos(x0), neg(0)) → IF(and(true, false), pos(x0), neg(0))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(true, false) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(y0, pos(0)) → IF(and(greatereq_int(y0, pos(0)), false), y0, pos(0)) at position [0] we obtained the following new rules [LPAR04]:

DIV(pos(x0), pos(0)) → IF(and(true, false), pos(x0), pos(0))
DIV(neg(s(x0)), pos(0)) → IF(and(false, false), neg(s(x0)), pos(0))
DIV(neg(0), pos(0)) → IF(and(true, false), neg(0), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
QDP
                                                                                                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
DIV(pos(x0), pos(0)) → IF(and(true, false), pos(x0), pos(0))
DIV(neg(s(x0)), pos(0)) → IF(and(false, false), neg(s(x0)), pos(0))
DIV(neg(0), pos(0)) → IF(and(true, false), neg(0), pos(0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(true, false) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(true, false) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
QDP
                                                                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
IF(true, x, y) → DIV(minus_int(x, y), y)
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule IF(true, x, y) → DIV(minus_int(x, y), y) at position [0] we obtained the following new rules [LPAR04]:

IF(true, pos(x0), neg(x1)) → DIV(pos(plus_nat(x0, x1)), neg(x1))
IF(true, neg(x0), pos(x1)) → DIV(neg(plus_nat(x0, x1)), pos(x1))
IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1))
IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
QDP
                                                                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
IF(true, pos(x0), neg(x1)) → DIV(pos(plus_nat(x0, x1)), neg(x1))
IF(true, neg(x0), pos(x1)) → DIV(neg(plus_nat(x0, x1)), pos(x1))
IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1))
IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
QDP
                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1))
DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule IF(true, pos(x0), pos(x1)) → DIV(minus_nat(x0, x1), pos(x1)) we obtained the following new rules [LPAR04]:

IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(s(z0), s(z1)), pos(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
QDP
                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(s(z0), s(z1)), pos(s(z1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(s(z0), s(z1)), pos(s(z1))) at position [0] we obtained the following new rules [LPAR04]:

IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(z0, z1), pos(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                        ↳ QDP
                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                              ↳ QDPOrderProof
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(z0, z1), pos(s(z1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(true, pos(s(z0)), pos(s(z1))) → DIV(minus_nat(z0, z1), pos(s(z1)))
The remaining pairs can at least be oriented weakly.

DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV(x1, x2)) = x1   
POL(IF(x1, x2, x3)) = x2   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 1 + x1   
POL(neg(x1)) = 1   
POL(pos(x1)) = 1 + x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_nat(0, 0) → pos(0)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                        ↳ QDP
                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                            ↳ QDP
                                                                                                                                                                              ↳ QDPOrderProof
QDP
                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(pos(s(x0)), pos(s(x1))) → IF(and(greatereq_int(pos(x0), pos(x1)), true), pos(s(x0)), pos(s(x1)))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
QDP
                                                                                                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(false, true) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
QDP
                                                                                                                                                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
QDP
                                                                                                                                                                      ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1))
DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule IF(true, neg(x0), neg(x1)) → DIV(minus_nat(x1, x0), neg(x1)) we obtained the following new rules [LPAR04]:

IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(s(z1), s(z0)), neg(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
QDP
                                                                                                                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(s(z1), s(z0)), neg(s(z1)))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(s(z1), s(z0)), neg(s(z1))) at position [0] we obtained the following new rules [LPAR04]:

IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(z1, z0), neg(s(z1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                        ↳ QDP
                                                                                                                                                                          ↳ Rewriting
QDP
                                                                                                                                                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(z1, z0), neg(s(z1)))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(true, neg(s(z0)), neg(s(z1))) → DIV(minus_nat(z1, z0), neg(s(z1)))
The remaining pairs can at least be oriented weakly.

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))
Used ordering: Matrix interpretation [MATRO]:

POL(DIV(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\01/
·x2

POL(neg(x1)) =
/10\
\00/
·x1 +
/1\
\1/

POL(s(x1)) =
/01\
\01/
·x1 +
/0\
\0/

POL(IF(x1, x2, x3)) =
/11\
\10/
·x1 +
/0\
\0/
+
/00\
\00/
·x2 +
/00\
\01/
·x3

POL(and(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\00/
·x2

POL(greatereq_int(x1, x2)) =
/00\
\11/
·x1 +
/0\
\1/
+
/10\
\11/
·x2

POL(false) =
/0\
\0/

POL(true) =
/1\
\1/

POL(minus_nat(x1, x2)) =
/00\
\00/
·x1 +
/0\
\0/
+
/00\
\11/
·x2

POL(0) =
/1\
\0/

POL(pos(x1)) =
/00\
\11/
·x1 +
/1\
\0/

The following usable rules [FROCOS05] were oriented:

and(false, false) → false
and(true, false) → false



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP
                                                                                            ↳ Narrowing
                                                                                              ↳ QDP
                                                                                                ↳ DependencyGraphProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ UsableRulesProof
                                                                                                              ↳ QDP
                                                                                                                ↳ QReductionProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Narrowing
                                                                                                                      ↳ QDP
                                                                                                                        ↳ DependencyGraphProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ UsableRulesProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Narrowing
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Narrowing
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                                          ↳ AND
                                                                                                                                                            ↳ QDP
                                                                                                                                                            ↳ QDP
                                                                                                                                                              ↳ UsableRulesProof
                                                                                                                                                                ↳ QDP
                                                                                                                                                                  ↳ QReductionProof
                                                                                                                                                                    ↳ QDP
                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                        ↳ QDP
                                                                                                                                                                          ↳ Rewriting
                                                                                                                                                                            ↳ QDP
                                                                                                                                                                              ↳ QDPOrderProof
QDP
                                                                                                                                                                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(neg(s(x0)), neg(s(x1))) → IF(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x0)), neg(s(x1)))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.